
EE 356 WAV File Format Notes

https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
WAVE PCM soundfile format

The WAVE file format is a subset of Microsoft's RIFF specification for the storage of
multimedia files. A RIFF file starts out with a file header followed by a sequence of
data chunks. A WAVE file is often just a RIFF file with a single "WAVE" chunk
which consists of two sub-chunks -- a "fmt " chunk specifying the data format and a
"data" chunk containing the actual sample data. Call this form the "Canonical form".
Who knows how it really all works.

I use the standard WAVE format as created by the sox program:

https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://www.spies.com/Sox/

Offset Size Name Description

The canonical WAVE format starts with the RIFF header:

0 4 ChunkID Contains the letters "RIFF" in ASCII form
 (0x52494646 big-endian form).
4 4 ChunkSize 36 + SubChunk2Size, or more precisely:
 4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)
 This is the size of the rest of the chunk
 following this number. This is the size of
the
 entire file in bytes minus 8 bytes for the
 two fields not included in this count:
 ChunkID and ChunkSize.
8 4 Format Contains the letters "WAVE"
 (0x57415645 big-endian form).

The "WAVE" format consists of two subchunks: "fmt " and "data":

The "fmt " subchunk describes the sound data's format:

12 4 Subchunk1ID Contains the letters "fmt "
 (0x666d7420 big-endian form).
16 4 Subchunk1Size 16 for PCM. This is the size of the
 rest of the Subchunk which follows this
number.
20 2 AudioFormat PCM = 1 (i.e. Linear quantization)
 Values other than 1 indicate some
 form of compression.
22 2 NumChannels Mono = 1, Stereo = 2, etc.
24 4 SampleRate 8000, 44100, etc.
28 4 ByteRate == SampleRate * NumChannels * BitsPerSample/8
32 2 BlockAlign == NumChannels * BitsPerSample/8
 The number of bytes for one sample including
 all channels. I wonder what happens when
 this number isn't an integer?
34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.
 2 ExtraParamSize if PCM, then doesn't exist
 X ExtraParams space for extra parameters

The "data" subchunk contains the size of the data and the actual sound:

36 4 Subchunk2ID Contains the letters "data"
 (0x64617461 big-endian form).
40 4 Subchunk2Size == NumSamples * NumChannels * BitsPerSample/8
 This is the number of bytes in the data.
 You can also think of this as the size
 of the read of the subchunk following this
 number.
44 * Data The actual sound data.

As an example, here are the opening 72 bytes of a WAVE file with bytes shown as
hexadecimal numbers:

52 49 46 46 24 08 00 00 57 41 56 45 66 6d 74 20 10 00 00 00 01 00 02 00
22 56 00 00 88 58 01 00 04 00 10 00 64 61 74 61 00 08 00 00 00 00 00 00
24 17 1e f3 3c 13 3c 14 16 f9 18 f9 34 e7 23 a6 3c f2 24 f2 11 ce 1a 0d

Here is the interpretation of these bytes as a WAVE
soundfile:

Notes:

• The default byte ordering assumed for WAVE data files is little-endian. Files
written using the big-endian byte ordering scheme have the identifier RIFX
instead of RIFF.

• The sample data must end on an even byte boundary. Whatever that means.
• 8-bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit

samples are stored as 2's-complement signed integers, ranging from -32768 to
32767.

• There may be additional subchunks in a Wave data stream. If so, each will have
a char[4] SubChunkID, and unsigned long SubChunkSize, and SubChunkSize
amount of data.

• RIFF stands for Resource Interchange File Format.

General discussion of RIFF files:

Multimedia applications require the storage and management of a wide variety of
data, including bitmaps, audio data, video data, and peripheral device control
information. RIFF provides a way to store all these varied types of data. The type of
data a RIFF file contains is indicated by the file extension. Examples of data that may
be stored in RIFF files are:

• Audio/visual interleaved data (.AVI)
• Waveform data (.WAV)
• Bitmapped data (.RDI)
• MIDI information (.RMI)
• Color palette (.PAL)
• Multimedia movie (.RMN)
• Animated cursor (.ANI)
• A bundle of other RIFF files (.BND)

NOTE: At this point, AVI files are the only type of RIFF files that have been fully
implemented using the current RIFF specification. Although WAV files have been
implemented, these files are very simple, and their developers typically use an older
specification in constructing them.

For more info see http://www.ora.com/centers/gff/formats/micriff/index.htm

References:

1. http://netghost.narod.ru/gff/graphics/summary/micriff.htm RIFF Format
Reference (good).

2. http://www.lightlink.com/tjweber/StripWav/WAVE.html

http://www.ora.com/centers/gff/formats/micriff/index.htm
http://netghost.narod.ru/gff/graphics/summary/micriff.htm
http://www.lightlink.com/tjweber/StripWav/WAVE.html

http://technology.niagarac.on.ca/courses/ctec1631/WavFileFormat.html
CTEC1631 Course Notes:

WAV File Format

WAV files are probably the simplest of the common formats for storing audio
samples. Unlike MPEG and other compressed formats, WAVs store samples "in the
raw" where no pre-processing is required other that formatting of the data.

The following information was derived from several sources including some on the
internet which no longer exist. Being somewhat of a proprietary Microsoft format
there are some elements here which were empirically determined and so some details
may remain somewhat sketchy. From what I've heard, the best source for information
is the File Formats Handbook by Gunter Born (1995, ITP Boston)

The WAV file itself consists of three "chunks" of information: The RIFF chunk which
identifies the file as a WAV file, The FORMAT chunk which identifies parameters
such as sample rate and the DATA chunk which contains the actual data (samples).

Each Chunk breaks down as follows:

RIFF Chunk (12 bytes in length total)
Byte Number
0 - 3 "RIFF" (ASCII Characters)

4 - 7 Total Length Of Package To Follow
(Binary, little endian)

8 - 11 "WAVE" (ASCII Characters)

FORMAT Chunk (24 bytes in length total)

Byte Number
0 - 3 "fmt_" (ASCII Characters)

4 - 7 Length Of FORMAT Chunk (Binary,
always 0x10)

http://technology.niagarac.on.ca/courses/ctec1631/WavFileFormat.html

8 - 9 Always 0x01

10 - 11 Channel Numbers (Always
0x01=Mono, 0x02=Stereo)

12 - 15 Sample Rate (Binary, in Hz)
16 - 19 Bytes Per Second

20 - 21
Bytes Per Sample: 1=8 bit Mono,
2=8 bit Stereo or 16 bit Mono, 4=16
bit Stereo

22 - 23 Bits Per Sample

DATA Chunk

Byte Number
0 - 3 "data" (ASCII Characters)
4 - 7 Length Of Data To Follow
8 - end Data (Samples)

The easiest approach to this file format might be to look at an actual WAV file to see
how data is stored. In this case, we examine DING.WAV which is standard with all
Windows packages. DING.WAV is an 8-bit, mono, 22.050 KHz WAV file of 11,598
bytes in length. Lets begin by looking at the header of the file (using DEBUG).

246E:0100 52 49 46 46 46 2D 00 00-57 41 56 45 66 6D 74 20 RIFFF-..WAVEfmt
246E:0110 10 00 00 00 01 00 01 00-22 56 00 00 22 56 00 00 "V.."V..
246E:0120 01 00 08 00 64 61 74 61-22 2D 00 00 80 80 80 80 data"-......
246E:0130 80 80 80 80 80 80 80 80-80 80 80 80 80 80 80 80
246E:0140 80 80 80 80 80 80 80 80-80 80 80 80 80 80 80 80

As expected, the file begins with the ASCII characters "RIFF" identifying it as a
WAV file. The next four bytes tell us the length is 0x2D46 bytes (11590 bytes in
decimal) which is the length of the entire file minus the 8 bytes for the "RIFF" and
length (11598 - 11590 = 8 bytes).

The ASCII characters for "WAVE" and "fmt " follow. Next (line 2 above) we find the
value 0x00000010 in the first 4 bytes (length of format chunk: always constant at
0x10). The next four bytes are 0x0001 (Always) and 0x0001 (A mono WAV, one
channel used).

Since this is a 8-bit WAV, the sample rate and the bytes/second are the same at
0x00005622 or 22,050 in decimal. For a 16-bit stereo WAV the bytes/sec would be 4

times the sample rate. The next 2 bytes show the number of bytes per sample to be
0x0001 (8-bit mono) and the number of bits per sample to be 0x0008.

Finally, the ASCII characters for "data" appear followed by 0x00002D22 (11,554
decimal) which is the number of bytes of data to follow (actual samples). The data is a
value from 0x00 to 0xFF. In the example above 0x80 would represent "0" or silence
on the output since the DAC used to playback samples is a bipolar device (i.e. a value
of 0x00 would output a negative voltage and a value of 0xFF would output a positive
voltage at the output of the DAC on the sound card).

Note that there are extension to the basic WAV format which may be supported in
newer systems -- for example if you look at DING.WAV
in C:\Windows\Media you'll see some extra bytes added after the format chunk
before the "data" area -- but the basic format remains the same.

As a final example consider the header for the following WAV file recorded at 44,100
samples per second in 16-bit stereo.

246E:0100 52 49 46 46 2C 48 00 00-57 41 56 45 66 6D 74 20 RIFF,H..WAVEfmt
246E:0110 10 00 00 00 01 00 02 00-44 AC 00 00 10 B1 02 00 D.......
246E:0120 04 00 10 00 64 61 74 61-00 48 00 00 00 00 00 00 data.H......
246E:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Again we find all the expected structures. Note that the sample rate is 0xAC44
(44,100 as an unsigned int in decimal) and the bytes/second is 4 times that figure since
this is a 16-bit WAV (* 2) and is stereo (again * 2). The Channel Numbers field is
also found to be 0x02 here and the bits per sample is 0x10 (16 decimal).

This page is part of theCTEC1631 course home page

http://technology.niagarac.on.ca/courses/ctec1631/index.html

http://www.ringthis.com/dev/wave_format.htm
Ring This... Wave File

Format

This is a brief outline of the wav file spec. It isn't comprehensive, but it's
enough to get you started writing wav files yourself.

Quick and Dirty WAV layout

This is what is missing as far as documentation I've found. There's a lot of
theory and introduction, but when it comes time to implement this bad boy,
it's tough to find. So, without further ado, here is the wave header for a
general purpose, PCM format WAV file:

Description Size (bytes) - Data
Type (Windows)

Usual contents

"RIFF" file description
header

4 bytes - FOURCC The ascii text string
"RIFF". mmsystem.h
provides the macro
FOURCC_RIFF for this
purpose.

size of file 4 bytes - DWORD The file size LESS the
size of the "RIFF"
description (4 bytes)
and the size of file
description (4 bytes).
This is usually file size -
8.

"WAVE" description
header

4 bytes - FOURCC The ascii text string
"WAVE". Check out the
mmioFOURCC macro in
mmsystem.h.

http://www.ringthis.com/dev/wave_format.htm

"fmt " description
header

4 bytes - FOURCC The ascii text string "fmt
" (note the trailing
space). Check out the
mmioFOURCC macro in
mmsystem.h.

size of WAVE section
chunck

4 bytes - DWORD The size of the WAVE
type format (2 bytes) +
mono/stereo flag (2
bytes) + sample rate (4
bytes) + bytes/sec (4
bytes) + block
alignment (2 bytes) +
bits/sample (2 bytes).
This is usually 16 (or
0x10).

WAVE type format 2 bytes - WORD Type of WAVE format.
This is a PCM header, or
a value of 0x01.

mono/stereo 2 bytes - WORD mono (0x01) or stereo
(0x02)

sample rate 4 bytes - DWORD Sample rate.

bytes/sec 4 bytes - DWORD Bytes/Second

Block alignment 2 bytes - WORD Block alignment

Bits/sample 2 bytes - WORD Bits/Sample

"data" description
header

4 bytes - FOURCC The ascii text string
"data". Check out the
mmioFOURCC macro in
mmsystem.h.

size of data chunk 4 bytes - DWORD Number of bytes of data
is included in the data
section.

Data Unspecified data buffer Your data.

Some gotchas

 Make sure all numbers are in Intel's little endian format, that is,
0x12345678 should be written 0x78 0x56 0x34 0x12.

Other WAV resources

 TJW has a good page.
 Also check out the MSDN.

http://www.lightlink.com/tjweber/StripWav/Canon.html

	https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
	WAVE PCM soundfile format
	Notes:
	General discussion of RIFF files:
	References:

	http://technology.niagarac.on.ca/courses/ctec1631/WavFileFormat.html
	CTEC1631 Course Notes: WAV File Format
	Quick and Dirty WAV layout
	Some gotchas
	Other WAV resources

